RINCIPLES OF OPERATING SYSTEMS

LECTURE 14 : PAGE TABLES

Page Table Structure

B Hierarchical Paging
B Hashed Page Tables

B [nverted Page Tables

Hierarchical Page Tables

B Break up the logical address space into multiple page
tables.

m A simple technique is a two-level page table.

Two-Level Paging Example

m A logical address (on 32-bit machine with 4K page size) is
divided into:

= a page number consisting of 20 bits.
= a page offset consisting of 12 bits.

m Since the page table is paged, the page number is further
divided into:

= a 10-bit page number.
= a 10-bit page offset.
B Thus, a logical address is as follows:

page number ‘ page offset
Pi ‘ P2 ‘ d
10 10 12

where p; is an index into the outer page table, and p, is the
displacement within the page of the outer page table.

Two-Level Page-Table Scheme

outer-page
table

900

page of
page table

page table

Address-Translation Scheme

B Address-translation scheme for a two-level 32-bit paging
architecture

logical address
P | Py | d

outer-page
table

page of
page table

Hashed Page Tables

B Common in address spaces > 32 bits.

m The virtual page number is hashed into a page table. This
page table contains a chain of elements hashing to the
same location.

m Virtual page numbers are compared in this chain
searching for a match. If a match is found, the
corresponding physical frame is extracted.

Hashed Page Table

physical
logical address 1 address

da

physical
— |q]s| |‘l|p|r|_|T"' memory

hash table

Inverted Page Table

One entry for each real page of memory.

Entry consists of the virtual address of the page stored in
that real memory location, with information about the
process that owns that page.

Decreases memory needed to store each page table, but
Increases time needed to search the table when a page
reference occurs.

Use hash table to limit the search to one — or at most a
few — page-table entries.

Inverted Page Table Architecture

logical :
address physical
o5 o address physical

/ | memory

search l

page table

